Q.P. Code: 16CE142	R1(6
Reg. No:	4	8
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTT	UR	
(AUTONOMOUS)		
B.Tech IV Year II Semester Regular & Supplementary Examinations July	-2021	
ADVANCED STRUCTURAL DESIGN		
(Civil Engineering)		
Time: 3 hours	Max. N	Aarks: 60
(Answer all Five Units $5 \times 12 = 60$ Marks)		
UNIT-I		
 Design an interior panel of a flat slab 8 m x 8 m for a live load of 10 KN/m2. Use M20 grade concrete and Fe415 steel respectively. 	L4	12M
OR		
2 Design an interior panel of a flat slab with panel size 5 x 5 m supported by size of column is 500mm x 500mm. Without Provide suitable drop. Take live load as 4 KN/m2. Take floor finishing load as 1KN/m2 Use M20 steel and Fe415 steel.	L4	12M
UNIT-II		
3 Design a rectangular RC water tank resting on the ground with an open top for a capacity of 80,000 litres. The inside dimension of the tank may be taken as 6m x 4m. Design the side walls of the tank using M20 grade concrete and Fe 250 grade.	L4	12M
OR		
4 Design a circular water tank with flexible base for a capacity of 4 lakhs litres of water. The depth of tank may be kept 4m including a free board of 200mm. Use M20 concrete and Fe 415 steel.	L4	12M
UNIT-III		
5 Design the stem of a cantilever retaining wall to retain an earth embankment with a horizontal top 3.75 m above ground level. Density of earth = 19 KN/m3. Angle of internal friction $\phi = 300$. SBC of soil =180 KN/m2. Coefficient of internal friction between soil and concerts = 0.5. Design of stem and heat estimated to 1.020	L4	12M
between soil and concrete $= 0.5$. Design of stem and heel not required Adopt M20		

OR

grade concrete and Fe 415 grade steel.

6 Design a cantilever retaining wall to retain earth for a height of 3.5m. The density of L4 12M soil is 18 KN/m3. Safe bearing capacity of soil is (qo)=200 KN/m2. Take the coefficient of friction between concrete and soil as 0.5. The angle of repose is 30degrees. Design of strem and heel not required. Use M20 concrete and Fe415 steel.

UNIT-IV

7 Design a welded plate girder of span 24 m to carry a super imposed load of 35 KN/m. L4 12M fu = 415 MPa. using end stiffners but avoid intermediate stiffners. Use Fe - 415 &(Fy250) grade steel.

Q.P. Code: 16CE142

OR

8 A plate girder simply supported at a span of 24m consists of a web plate 1200 mm x L4 12M
 12 mm and a flange plate 440 mm x 36 mm for each flange. The girder carries an super imposed load of 35KN/m. using end stiffners but avoid intermediate stiffners. Use Fe - 415 &(Fy250) grade steel.

UNIT-V

9 Determine the moment and forces due to the vertical and horizontal loads acting a L4 12M simply supported gantry girder given the following data (i)Simply supported span =6m (ii)Cranes wheel centres=3.6 (iii)Self-weight of the girder=1.6KN/m (iv)Maximum crane wheel load=220KN/m (v)Weight of crab/trolley=60KN (vi)Maximum hook load=200KN Calculate also the serviceability deflection(working load).

OR

10 Explain step by step procedure how to design a gantry girder as per IS code.

L4 12M

R16

*** END ***